Magnesium Glycinate

Magnesium Glycinate Common Names

Magnesium Glycinate | Magnesium Diglycinate | Magnesium Bisglycinate | Magnesium | Glycine

Top Benefits of Magnesium Glycinate

  • Supports cellular energy*
  • Supports cardiovascular function*
  • Supports brain function*
  • Supports musculoskeletal health*
  • Supports healthy gut microbiota*

What Is Magnesium Glycinate?

Magnesium glycinate is a chelated form of the mineral magnesium. It is made from one magnesium bound to two glycines. Both are involved in supporting efficient cellular function. Magnesium is one of the most abundant minerals in the body and is vital for the functioning of all living cells. It’s used in more than 300 enzymes. ATP (i.e., cellular energy) occurs complexed with ATP, so all enzymes utilizing or synthesizing ATP require magnesium. The same is true for enzymes that synthesize DNA and RNA, magnesium is always involved. Magnesium also plays a large role in breaking down sugars (glycolysis). Because magnesium supports the electrical functions of cells (i.e., it’s an electrolyte), muscle and nerve function rely on magnesium. Glycine was discovered in the early 1800’s. It’s name comes from the Greek word for sweet, because glycine has a sweet taste similar to sugar. Glycine is a conditional amino acid. While we can make glycine inside the body (i.e., it’s non-essential), there are circumstances where the amount we make and what we get in the diet appear to be insufficient to optimize functional health. Glycine is used to make many proteins in the body. An example is glutathione, which functions as part of cellular antioxidant defenses and detoxification. Glycine is also used in the brain as a neurotransmitter and throughout the body to make collagen. Collagen proteins are the best dietary source of glycine.  

Neurohacker’s Magnesium Glycinate Sourcing

Magnesium glycinate is used when there’s a role for both magnesium and glycine in the formula. For example, both support healthy cellular energy function. Magnesium is involved in making and using ATP and glycine supports building the antioxidant molecule glutathione, so boosts antioxidant defenses.

Magnesium glycinate has higher bioavailability than other more traditional forms of magnesium supplementation, because the two glycines act as a carrier and allow for efficient absorption (1)

Magnesium glycinate sourcing is focused on ensuring it is non-GMO, gluten-free and vegan.

Magnesium Glycinate Dosing Principles and Rationale

The Recommended Dietary Allowances for magnesium in adults varies from 310 to 420 depending upon age and gender. A majority of Americans of all ages fall somewhat short of this amount. Supplying even a low dose of magnesium can help close the gap. Magnesium glycinate contains about 14% elemental magnesium by mass (the other 86% is glycine), so the complex provides far more glycine than magnesium. An average adult requires about 15 grams of glycine daily. About 2-3 grams is made in the body; diet must provide the rest. (2) Magnesium glycinate is generally considered to be dose-dependent (see Neurohacker Dosing Principles) in the range it’s commonly dosed. We generally dose it in small amounts to augment dietary intake of both magnesium and glycine.

Magnesium Key Mechanisms

Metabolism and energy generation

  • Magnesium is required for the synthesis of ATP by ATP synthase in mitochondria  (3, 4)
  • Magnesium forms a complex with ATP (MgATP) that is required for many rate-limiting metabolic enzymes (5)
  • Regulates rate-limiting enzymes involved in carbohydrate and lipid metabolism (5, 6)
  • Regulates rate-limiting enzymes involved protein and nucleic acid synthesis (5, 6)
  • Regulates insulin sensitivity (7, 8)

Cell signaling

  • Supports cellular sodium and potassium influx and efflux (5)
  • Slows calcium entry into cells so supports balanced calcium signaling (5, 6)
  • Required for protein phosphorylation (enzyme activation) (5, 6)
  • Required for the activity of adenylate cyclase - cyclic adenosine monophosphate (cAMP) synthesis (9)

Cell structure

  • Stabilizes proteins, nucleic acids, chromosomes, and biological membranes (5)

Cardiovascular function

  • Supports cardiac muscle contraction and heart rhythm (6, 10)
  • Supports vascular tone (6, 10)
  • Supports platelet function (6, 11)

Brain function

  • Required for neurotransmitter release and normal neurological function (6)
  • Supports the activity of the glutamate N-methyl-D-aspartate (NMDA) receptor (12)

Muscle function

  • Required for muscle contraction (6, 13)
  • Supports muscle strength (14, 15)

Skeletal system

  • Supports bone metabolism/remodeling by calcium absorption (5)
  • Supports calcitonin and parathyroid hormone activity (5)
  • Supports bone formation (5)

Gut microbiota

  • Supports the composition of the gut microbiota (16–18)

Glycine Key Mechanisms

Structure and Function Roles

  • Plays an essential role in protein synthesis, especially collagen synthesis (19) 
  • Providing flexibility to active sites in many enzymes (20)
  • Supports cell membrane function to promote balanced immunity and inflammatory responses (21)

Protein Precursor

  • Precursor for synthesis of glutathione (22–24)
  • Precursor for synthesis of creatine (25)
  • Precursor for synthesis of porphyrins and heme (26)
  • Precursor for synthesis of purines (27)

Brain and Nervous System Function

  • Acts as a neurotransmitter (i.e., has its own neurotransmission system) (28–31)
  • Supports healthy glutaminergic neurotransmission (32)
  • Supports restful sleep (33, 34)

Longevity / Hallmarks of Aging

  • Supports reduced glycation end products (i.e., sugar-protein cross links) (35–38)
  • Supports growth hormone secretion (39)

Nutrient Synergies

  • N-Acetyl-Cysteine - For glutathione synthesis (40–42)


1. S. A. Schuette, B. A. Lashner, M. Janghorbani, JPEN J. Parenter. Enteral Nutr. 18, 430–435 (1994).
2. E. Meléndez-Hevia, P. De Paz-Lugo, A. Cornish-Bowden, M. L. Cárdenas, J. Biosci. 34, 853–872 (2009).
3. Y. H. Ko, S. Hong, P. L. Pedersen, J. Biol. Chem. 274, 28853–28856 (1999).
4. A. U. Igamberdiev, L. A. Kleczkowski, Front. Plant Sci. 6, 10 (2015).
5. S.-M. Glasdam, S. Glasdam, G. H. Peters, Adv. Clin. Chem. 73, 169–193 (2016).
6. W. Jahnen-Dechent, M. Ketteler, Clin. Kidney J. 5, i3–i14 (2012).
7. M. Barbagallo, L. J. Dominguez, Arch. Biochem. Biophys. 458, 40–47 (2007).
8. M. de L. Lima et al., Diabetes Res. Clin. Pract. 83, 257–262 (2009).
9. S. Y. Cech, W. C. Broaddus, M. E. Maguire, Mol. Cell. Biochem. 33, 67–92 (1980).
10. B. M. Altura, B. T. Altura, Magnesium. 4, 226–244 (1985).
11. M. Shechter et al., Am. J. Cardiol. 84, 152–156 (1999).
12. J. P. Ruppersberg, E. v. Kitzing, R. Schoepfer, Seminars in Neuroscience. 6, 87–96 (1994).
13. J. D. Potter, S. P. Robertson, J. D. Johnson, Fed. Proc. 40, 2653–2656 (1981).
14. L. R. Brilla, T. F. Haley, J. Am. Coll. Nutr. 11, 326–329 (1992).
15. L. J. Dominguez et al., Am. J. Clin. Nutr. 84, 419–426 (2006).
16. E. K. Crowley et al., Mar. Drugs. 16 (2018), doi:10.3390/md16060216.
17. B. Pyndt Jørgensen et al., Acta Neuropsychiatr. 27, 307–311 (2015).
18. G. Winther et al., Acta Neuropsychiatr. 27, 168–176 (2015).
19. M. D. Shoulders, R. T. Raines, Annu. Rev. Biochem. 78, 929–958 (2009).
20. B. X. Yan, Y. Q. Sun, J. Biol. Chem. 272, 3190–3194 (1997).
21. Z. Zhong et al., Curr. Opin. Clin. Nutr. Metab. Care. 6, 229–240 (2003).
22. S. C. Lu, Biochim. Biophys. Acta. 1830, 3143–3153 (2013).
23. A. Ruiz-Ramírez, E. Ortiz-Balderas, G. Cardozo-Saldaña, E. Diaz-Diaz, M. El-Hafidi, Clin. Sci. . 126, 19–29 (2014).
24. M. F. McCarty, J. H. O’Keefe, J. J. DiNicolantonio, Ochsner J. 18, 81–87 (2018).
25. J. T. Brosnan, R. P. da Silva, M. E. Brosnan, Amino Acids. 40, 1325–1331 (2011).
26. G. Layer, J. Reichelt, D. Jahn, D. W. Heinz, Protein Sci. 19, 1137–1161 (2010).
27. J. M. Berg, T. J. Tymoczko, L. Stryer, Biochemistry. New York: WH Freeman (2002).
28. J. W. Johnson, P. Ascher, Nature. 325, 529–531 (1987).
29. H. Betz, B. Laube, J. Neurochem. 97, 1600–1610 (2006).
30. F. Zafra, C. Giménez, IUBMB Life. 60, 810–817 (2008).
31. A. A. Ghavanini, D. A. Mathers, H.-S. Kim, E. Puil, J. Neurophysiol. 95, 3438–3448 (2006).
32. S. F. Traynelis et al., Pharmacol. Rev. 62, 405–496 (2010).
33. W. Yamadera et al., Sleep Biol. Rhythms. 5, 126–131 (2007).
34. M. Bannai, N. Kawai, K. Ono, K. Nakahara, N. Murakami, Front. Neurol. 3, 61 (2012).
35. S. Ramakrishnan, K. N. Sulochana, Exp. Eye Res. 57, 623–628 (1993).
36. S. Ramakrishnan, K. N. Sulochana, R. Punitham, Indian J. Biochem. Biophys. 34, 518–523 (1997).
37. M. Cruz et al., J. Endocrinol. Invest. 31, 694–699 (2008).
38. F. Bahmani, S. Z. Bathaie, S. J. Aldavood, A. Ghahghaei, Mol. Vis. 18, 439–448 (2012).
39. K. Kasai, M. Kobayashi, S. I. Shimoda, Metabolism. 27, 201–208 (1978).
40. S. Xie, L. Tian, J. Niu, G. Liang, Y. Liu, Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, and antioxidative ability of grass carp, Ctenopharyngodon idella. Fish Physiology and Biochemistry. 43 (2017), pp. 1011–1020.
41. K. A. Cieslik et al., J. Gerontol. A Biol. Sci. Med. Sci. 73, 1167–1177 (2018).
42. S. Xie, W. Zhou, L. Tian, J. Niu, Y. Liu, Fish Shellfish Immunol. 55, 233–241 (2016).

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.